

Subnetting IP Networks

Cisco Networking Academy® Mind Wide Open®

- 9.0 Introduction
- 9.1 Subnetting an IPv4 Network
- 9.2 Addressing Schemes
- 9.3 Design Considerations for IPv6

Presentation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential

Chapter 9: Objectives

Upon completion of this chapter, you will be able to:

- Explain why routing is necessary for hosts on different networks to communicate.
- Describe IP as a communication protocol used to identify a single device on a network.
- Given a network and a subnet mask, calculate the number of host addresses available.
- Calculate the necessary subnet mask in order to accommodate the requirements of a network.
- Describe the benefits of variable length subnet masking (VLSM).
- Explain how IPv6 address assignments are implemented in a business network.

Presentation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential

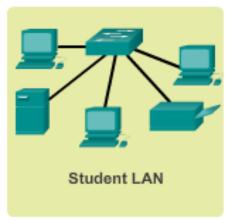
Cisco Networking Academy® Mind Wide Open®

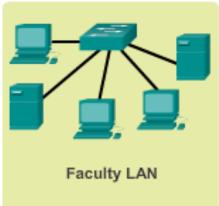
Network Segmentation

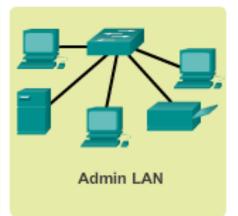
Reasons for Subnetting

Subnetting is the process of segmenting a network into multiple smaller network spaces called subnetworks or subnets.

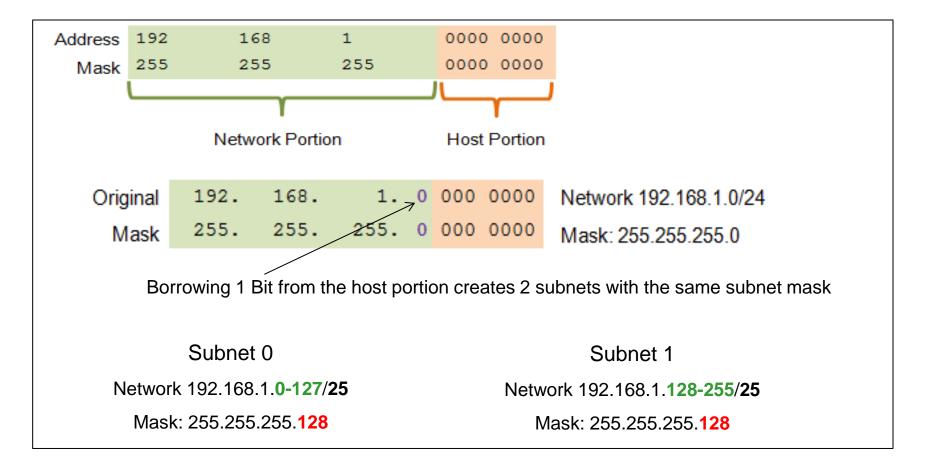
- Large networks must be segmented into smaller subnetworks, creating smaller groups of devices and services to:
 - Control traffic by containing broadcast traffic within each subnetwork.
 - Reduce overall network traffic and improve network performance.


Communication Between Subnets


- A router is necessary for devices on different networks and subnets to communicate.
- Each router interface must have an IPv4 host address that belongs to the network or subnet that the router interface is connected.
- Devices on a network and subnet use the router interface attached to their LAN as their default gateway.



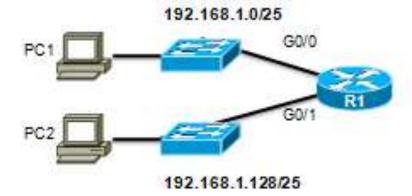
Planning the Network



Planning requires decisions on each subnet in terms of size, the number of hosts per subnet, and how host addresses will be assigned.

Basic Subnetting

- Borrowing Bits to Create Subnets
- Borrowing 1 bit $2^1 = 2$ subnets



Subnets in Use

Subnet 0

Network 192.168.1.0-127/25

Subnet 1

Network 192.168.1.128-255/25

Address Range for 192.168.1.0/25 Subnet

Network Address

192. 168. 1. 0 000 0000 = 192.168.1.0

First Host Address

192. 168. 1. 0 000 0001 = 192.168.1.1

Last Host Address

192. 168. 1. 0 111 1110 = 192.168.1.126

Broadcast Address

192. 168. 1. 0 111 1111 = 192.168.1.127

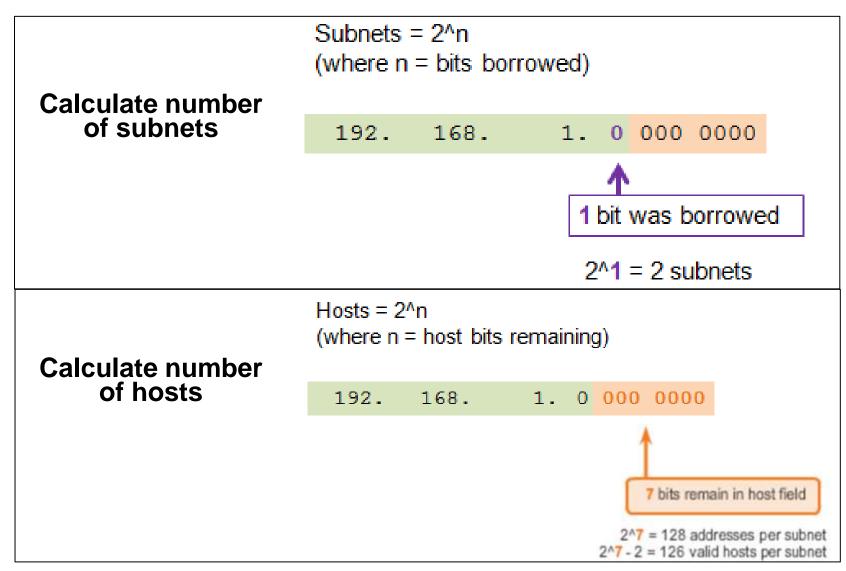
Address Range for 192.168.1.128/25 Subnet

Network Address

192. 168. 1. 1 000 0000 = 192.168.1.128

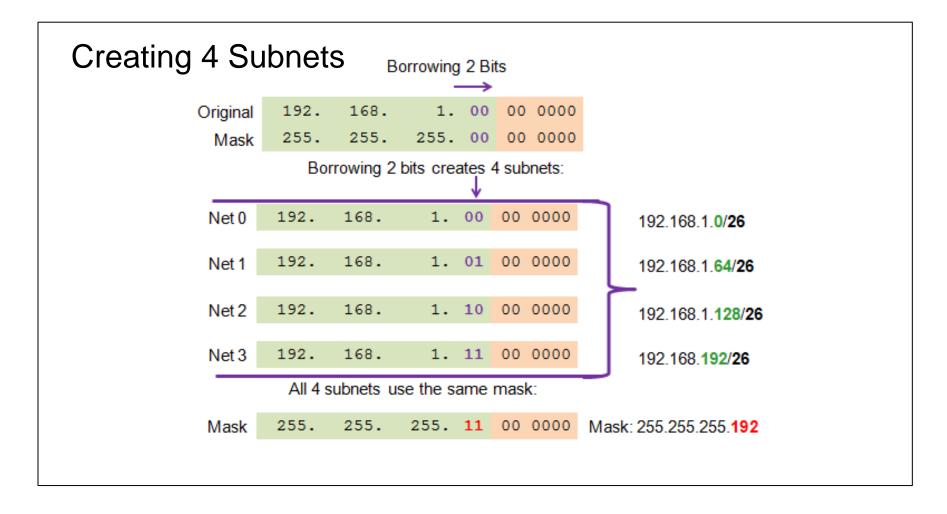
First Host Address

192. 168. 1. 1 000 0001 = 192.168.1.129


Last Host Address

192. 168. 1. 1 111 1110 = 192.168.1.254

Broadcast Address


192. 168. 1. 1 111 1111 = 192.168.1.255

Subnetting Formulas

Creating 4 Subnets

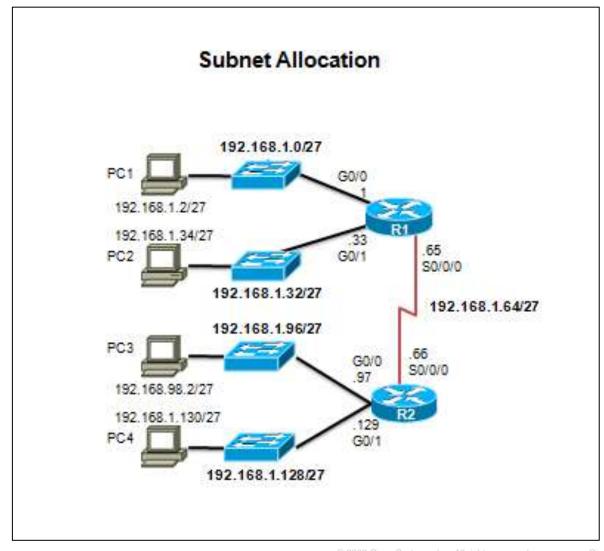
Borrowing 2 bits to create 4 subnets. $2^2 = 4$ subnets

Presentation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential

Creating Eight Subnets

Borrowing 3 bits to Create 8 Subnets. $2^3 = 8$ subnets

	Network	192.	168.	1.	000	0 0000	192.168.1.0
Net 0	First	192.	168.	1.	000	0 0001	192.168.1.1
1610747074	Last	192.	168.	1.	000	1 1110	192.168.1.30
	Broadcast	192.	168.	1.	000	1 1111	192.168.1.31
	Network	192.	168.	1.	001	0 0000	192.168.1.32
Net 1	First	192.	168.	1.	001	0 0001	192.168.1.33
	Last	192.	168.	1.	001	1 1110	192.168.1.62
	Broadcast	192.	168.	1.	001	1 1111	192.168.1.63
	Network	192.	168.	1.	010	0 0000	192.168.1.64
Net 2	First	192.	168.	1.	010	0 0001	192.168.1.65
	Last	192.	168.	1.	010	1 1110	192.168.1.94
	Broadcast	192.	168.	1.	010	1 1111	192.168.1.95
	Network	192.	168.	1.	010	0 0000	192.168.1.96
Net 3	First	192.	168.	1.	010	0 0001	192.168.1.97
	Last	192.	168.	1.	010	1 1110	192.168.1.126
	Broadcast	192.	168.	1.	010	1 1111	192.168.1.127


Presentation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential

Creating Eight Subnets (Cont.)

	Network	192.	168.	1.	100	0 0000	192.168.1.128
Net 4	Fist	192.	168.	1.	100	0 0001	192.168.1.129
	Last	192.	168.	1.	100	1 1110	192.168.1.158
	Broadcast	192.	168.	1.	100	1 1111	192.168.1.159
	Network	192.	168.	1.	101	0 0000	192.168.1.160
Net 5	Fist	192.	168.	1.	101	0 0001	192.168.1.161
11010	Last	192.	168.	1.	101	1 1110	192.168.1.190
	Broadcast	192.	168.	1.	101	1 1111	192.168.1.191
	Network	192.	168.	1.	110	0 0000	192.168.1.192
Net 6	Fist	192.	168.	1.	110	0 0001	192.168.1.193
	Last	192.	168.	1.	110	1 1110	192.168.1.222
	Broadcast	192.	168.	1.	110	1 1111	192.168.1.223
	Network	192.	168.	1.	111	0 0000	192.168.1.224
Net 7	Fist	192.	168.	1.	111	0 0001	192.168.1.225
	Last	192.	168.	1.	111	1 1110	192.168.1.254
	Broadcast	192.	168.	1.	111	1 1111	192.168.1.255

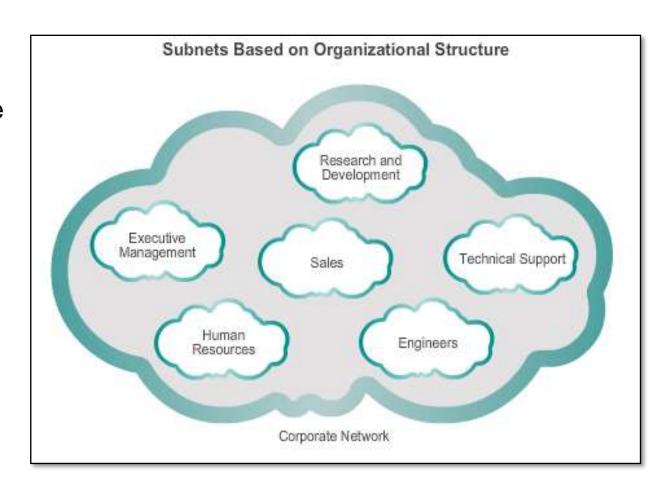
Creating Eight Subnets (Cont.)

Subnetting Based on Host Requirements

Two considerations when planning subnets:

- Number of subnets required
- Number of host addresses required

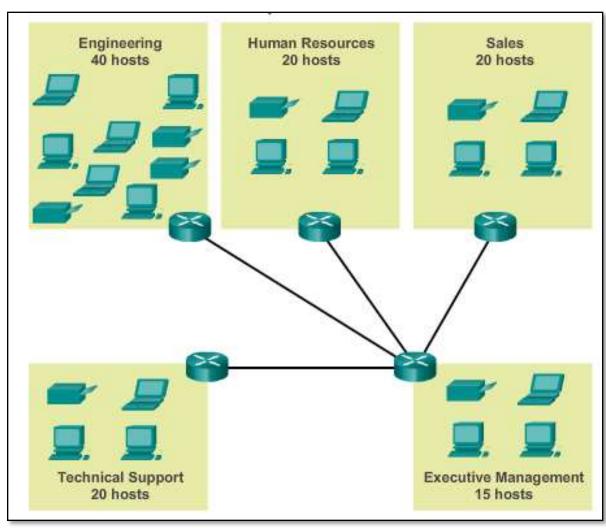
Formula to determine number of usable hosts: 2^n-2


- 2ⁿ (where n is the number of remaining host bits) is used to calculate the number of hosts.
- -2 (The subnetwork ID and broadcast address cannot be used on each subnet.)

resentation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential

Subnetting Network-Based Requirements

Calculate the number of subnets:


- 2ⁿ (where n is the number of bits borrowed)
- Subnet needed for each department.

Determining the Subnet Mask

Subnetting To Meet Network Requirements

- Balance the required number of subnets and hosts for the largest subnet.
- Design the addressing scheme to accommodate the maximum number of hosts for each subnet.
- Allow for growth in each subnet.

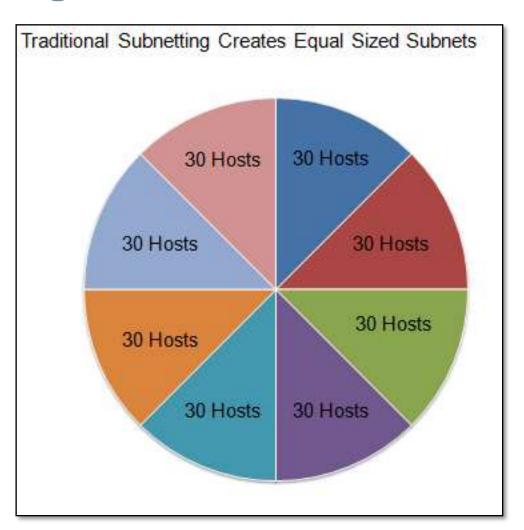
Determining the Subnet Mask

Subnetting To Meet Network Requirements

Subnets and Addresses

```
10101100.00010000.000000000000000000 172.16.0.0/22
  10101100.00010000.00000000000000000 172.16.0.0/26
   10101100.00010000.000000000.01000000 172.16.0.64/26
  10101100.00010000.000000000.100000000 172.16.0.128/26
  10101100.00010000.000000000.110000000 172.16.0.192/26
  10101100.00010000.000000001.00000000 172.16.1.0/26
  10101100.00010000.000000001.010000000 172.16.1.64/26
  10101100.00010000.000000001.100000000 172.16.1.128/26
                     Nets 7 – 14 not shown
15 10101100.00010000.0000000<mark>11.100000000</mark> 172.16.3.128/26
16 10101100.00010000.0000000<mark>11.110000000</mark> 172.16.3.192/26
                          2^4 = 16 2^6 - 2 = 62
```

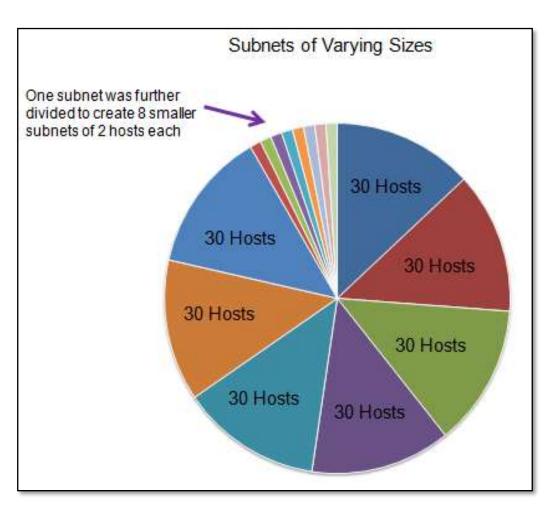
resentation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential

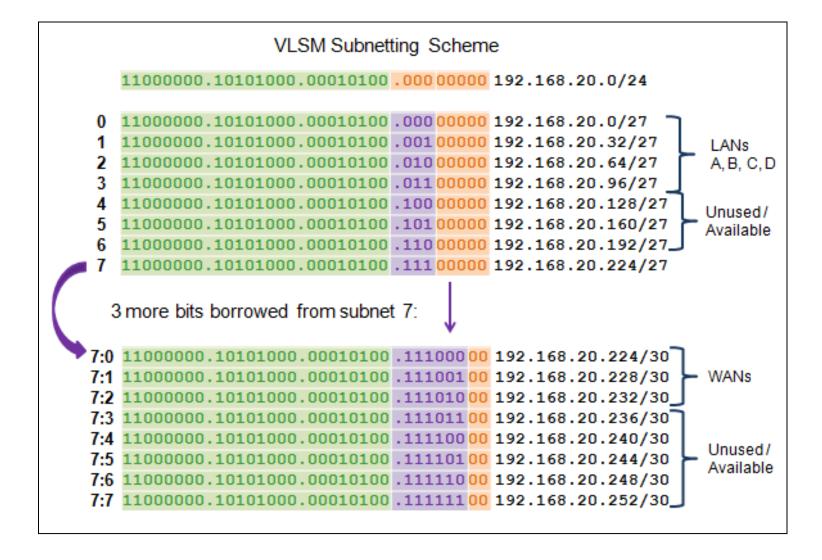

subnets

Hosts per subnet

Benefits of Variable Length Subnet Masking

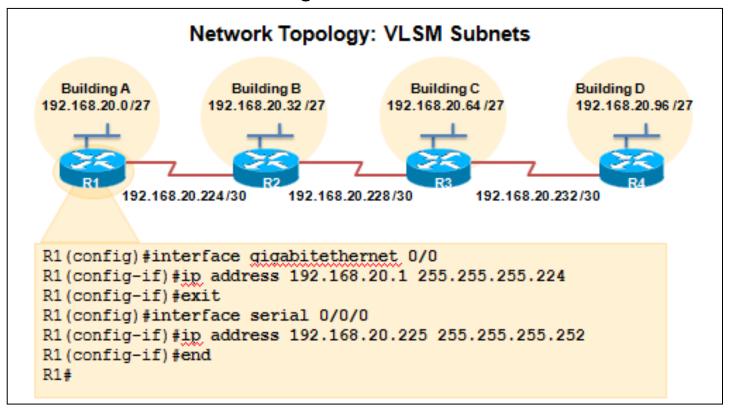
Traditional Subnetting Wastes Addresses


- Traditional subnetting Uses the same number of addresses is allocated for each subnet.
- Subnets that require fewer addresses have unused (wasted) addresses; for example, WAN links only need two addresses.



Variable Length Subnet Masks (VLSM)

- The variable-length subnet mask (VLSM) or subnetting a subnet provides more efficient use of addresses.
- VLSM allows a network space to be divided in unequal parts.
- Subnet mask varies, depending on how many bits have been borrowed for a particular subnet.
- Network is first subnetted, and then the subnets are resubnetted.



Benefits of Variable Length Subnet Masking Basic VLSM

- Using VLSM subnets, the LAN and WAN segments in example below can be addressed with minimum waste.
- Each LANs will be assigned a subnet with /27 mask.
- Each WAN link will be assigned a subnet with /30 mask.

VLSM Subnetting of 192.168.20.0 /24

	/27 Network	Hosts
Bldg A	.0	.130
Bldg B	.32	.3362
Bldg C	.64	.6594
Bldg D	.96	.97126
Unused	.128	.129158
Unused	.160	.161190
Unused	.192	.193222
	.224	.225254

	/30 Network	Hosts
WAN R1-R2	.224	.225226
WAN R2-R3	.228	.229230
WAN R3-R4	.232	.233234
Unused	.236	.237238
Unused	.240	.241242
Unused	.244	.245246
Unused	.248	.249250
Unused	.252	.253254

9.2 Addressing Schemes

Cisco Networking Academy® Mind Wide Open®

Structured Design

Planning to Address the Network

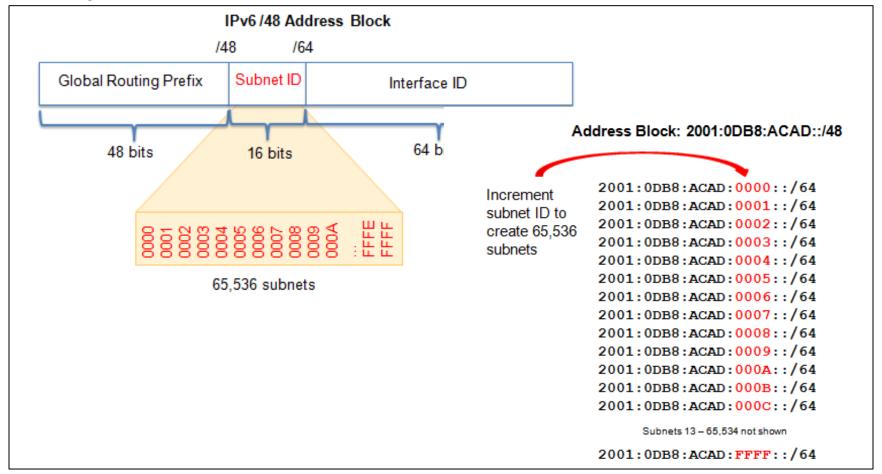
Allocation of network addresses should be planned and documented for the purposes of:

- Preventing duplication of addresses
- Providing and controlling access
- Monitoring security and performance

Client addresses – Usually dynamically assigned using the Dynamic Host Configuration Protocol (DHCP).

Sample Network Addressing Plan

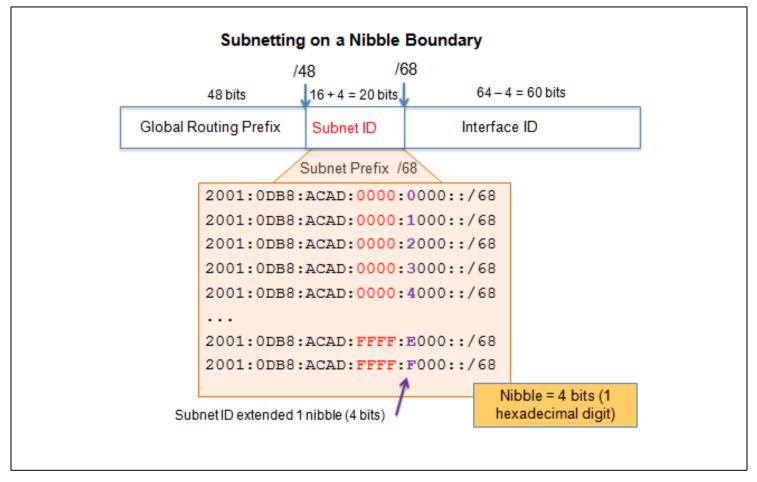
Network: 192.168.1.0/24					
Use	First	Last			
Host Devices	.1	.229			
Servers	.230	.239			
Printers	.240	.249			
Intermediary Devices	.250	.253			
Gateway (router LAN interface)	.254				


9.3 Design Considerations for IPv6

Cisco Networking Academy® Mind Wide Open®

Subnetting Using the Subnet ID

An IPv6 Network Space is subnetted to support hierarchical, logical design of the network



IPv6 Subnetting IPv6 Subnet Allocation 2001:0DB8:ACAD:0001::/64 Address Block: 2001:0DB8:ACAD::/48 2001:0DB8:ACAD:0000::/64 2001:0DB8:ACAD:0001::/64 G0/1 2001:0DB8:ACAD:0002::/64 5 subnets S0/0/0 2001:0DB8:ACAD:0003::/64 allocated from 2001:0DB8:ACAD:0002::/64 2001:0DB8:ACAD:0003::/64 2001:0DB8:ACAD:0004::/64 65,536 available 2001:0DB8:ACAD:0004::/64 2001:0DB8:ACAD:0005::/64 subnets PC3 \$0/0/0 2001:0DB8:ACAD:0006::/64 2001:0DB8:ACAD:0007::/64 2001:0DB8:ACAD:0008::/64 G0/1 2001:0DB8:ACAD:0005::/64 2001:0DB8:ACAD:FFFF::/64

Subnetting into the Interface ID

IPv6 bits can be borrowed from the interface ID to create additional IPv6 subnets.

